尽管深度神经网络(DNN)已成为多个无处不在的应用程序的骨干技术,但它们在资源受限的机器中的部署,例如物联网(IoT)设备,仍然具有挑战性。为了满足这种范式的资源要求,引入了与IoT协同作用的深入推断。但是,DNN网络的分布遭受严重的数据泄漏。已经提出了各种威胁,包括黑盒攻击,恶意参与者可以恢复送入其设备的任意输入。尽管许多对策旨在实现隐私的DNN,但其中大多数会导致额外的计算和较低的准确性。在本文中,我们提出了一种方法,该方法通过重新考虑分配策略而无需牺牲模型性能来针对协作深度推断的安全性。特别是,我们检查了使该模型容易受到黑盒威胁的不同DNN分区,并得出了应分配每个设备的数据量以隐藏原始输入的所有权。我们将这种方法制定为一种优化,在该方法中,我们在共同推导的延迟与数据级别的数据级别之间建立了权衡。接下来,为了放大最佳解决方案,我们将方法塑造为支持异质设备以及多个DNN/数据集的增强学习(RL)设计。
translated by 谷歌翻译
以安全为导向的研究思想和应用的开发需要精细的车辆轨迹数据,这些数据不仅具有很高的精度,而且还捕获了大量关键安全事件。本文介绍了Citysim数据集,该数据集的设计核心目的是促进基于安全的研究和应用。 Citysim的车辆轨迹从在12个不同位置录制的1140分钟的无人机视频中提取。它涵盖了各种道路几何形状,包括高速公路基本段,编织段,高速公路合并/偏离段,信号交叉点,停止对照的交叉点以及没有符号/信号控制的交叉点。通过五步操作生成CitySim轨迹,以确保轨迹精度。此外,数据集提供了车辆旋转的边界框信息,该信息被证明可以改善安全评估。与其他基于视频的轨迹数据集相比,CitySim数据集的严重性更高,包括切入,合并和分歧事件,其严重性更高。此外,CitySim通过提供相关资产(如记录位置的3D基本地图和信号时间)来促进对数字双胞胎应用的研究。这些功能为安全研究和应用程序提供了更全面的条件,例如自动驾驶汽车安全和基于位置的安全分析。该数据集可在https://github.com/ozheng1993/ucf-sst-citysim-dataset上在线获得。
translated by 谷歌翻译
这项研究是有关阿拉伯历史文档的光学特征识别(OCR)的一系列研究的第二阶段,并研究了不同的建模程序如何与问题相互作用。第一项研究研究了变压器对我们定制的阿拉伯数据集的影响。首次研究的弊端之一是训练数据的规模,由于缺乏资源,我们的3000万张图像中仅15000张图像。另外,我们添加了一个图像增强层,时间和空间优化和后校正层,以帮助该模型预测正确的上下文。值得注意的是,我们提出了一种使用视觉变压器作为编码器的端到端文本识别方法,即BEIT和Vanilla Transformer作为解码器,消除了CNNs以进行特征提取并降低模型的复杂性。实验表明,我们的端到端模型优于卷积骨架。该模型的CER为4.46%。
translated by 谷歌翻译
本文提出了一种简单而有效的方法,可以改善两种情况下的直接(x-to-y)翻译:零射击和直接数据时。我们将编码器和解码器的输入令牌修改为包括源和目标语言的信号。我们在从头开始训练或使用拟议的设置对验证模型进行填充时显示出绩效增长。在实验中,根据检查点选择标准,我们的方法在内部数据集上显示了近10.0个BLEU点的增益。在WMT评估活动中,从英语性能提高了4.17和2.87 BLEU点,在零射击设置和直接数据可用于培训时。而X-to-y在零射基线上提高了1.29 BLEU,而在多到许多基线上提高了0.44。在低资源设置中,我们在X-TO-Y域数据上进行填充时会看到1.5〜1.7点的改善。
translated by 谷歌翻译
本文介绍了我们提交给WMT21共享新闻翻译任务的受限轨道。我们专注于三个相对低的资源语言对孟加拉,从印地语,英语往返Hausa,以及来自Zulu的Xhosa。为了克服相对低行数据的限制,我们使用采用并行和单晶体数据的多任务目标训练多语言模型。此外,我们使用后退转换增强数据。我们还培养了一种双语模型,包括后退转换和知识蒸馏,然后使用序列到序列映射来组合两种模型。我们看到迄今为止英语和来自Hausa的Bleu Point的相对收益约为70%,以及与双语基线相比,孟加拉和从Zulu的孟加拉和从Zulu的相对改善约25%。
translated by 谷歌翻译
移动边缘学习(MEL)是一种学习范例,可以通过异构边缘设备(例如,IOT设备)来实现对机器学习模型的分布式训练。 Multi-Orchestrator MEL是指具有不同数据集的多个学习任务的共存,每个学习任务由Orchestrator管理,以便于分布式训练过程。在MEL中,培训性能恶化而不提供足够的培训数据或计算资源。因此,激励边缘设备成为学习者并提供其计算资源至关重要,并且提供他们的私人数据或从协调仪接收所需的数据并参与学习任务的培训过程。在这项工作中,我们提出了一种激励机制,我们制定了协调员 - 学习者的互动作为一个2轮Stackelberg游戏,以激励学习者的参与。在第一轮中,学习者决定哪些学习任务从事参与,然后在第二轮培训的数据量,以便他们的效用最大化。然后我们分析游戏并导致学习者的最佳策略。最后,已经进行了数值实验以评估提出的激励机制的性能。
translated by 谷歌翻译
人工智能(AI)见证了各种物联网(IoT)应用和服务的重大突破,从推荐系统到机器人控制和军事监视。这是由更容易访问感官数据的驱动以及生成实时数据流的Zettabytes(ZB)的普遍/普遍存在的设备的巨大范围。使用此类数据流来设计准确的模型,以预测未来的见解并彻底改变决策过程,将普遍的系统启动为有价值的范式,以实现更好的生活质量。普遍的计算和人工智能的汇合普遍AI的汇合将无处不在的物联网系统的作用从主要是数据收集到执行分布式计算,并具有集中学习的有希望的替代方案,带来了各种挑战。在这种情况下,应设想在物联网设备(例如智能手机,智能车辆)和基础架构(例如边缘节点和基站)之间进行明智的合作和资源调度,以避免跨越开销和计算计算并确保最大的性能。在本文中,我们对在普遍AI系统中克服这些资源挑战开发的最新技术进行了全面的调查。具体而言,我们首先介绍了普遍的计算,其架构以及与人工智能的相交。然后,我们回顾AI的背景,应用和性能指标,尤其是深度学习(DL)和在线学习,在无处不在的系统中运行。接下来,我们从算法和系统观点,分布式推理,培训和在线学习任务中,对物联网设备,边缘设备和云服务器的组合进行了分布式推理,培训和在线学习任务的深入文献综述。最后,我们讨论我们的未来愿景和研究挑战。
translated by 谷歌翻译
引入意外的系统干扰和新系统动态不允许保证的连续系统稳定性。在本研究中,我们提出了一种用于检测非线性高混沌系统的早期失败指标的新方法,并因此预测使用深机学习回归模型来抵消这种不稳定性的最佳参数校准。提出的方法连续监控系统和控制器信号。根据一组条件触发系统和控制器参数的重新校准,该条件旨在保持系统稳定性而不会折衷系统速度,预期结果或所需的处理能力。深度神经模型预测最佳抵消预期系统稳定性的参数值。为了证明所提出的方法的有效性,它应用于Duffing Van der Pol振荡器的非线性复合组合。该方法也在不同的场景下进行测试,系统和控制器参数最初被错误地选择,或者在运行时更改系统参数或在运行时引入新系统动态以测量有效性和反应时间。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
We introduce a machine-learning (ML)-based weather simulator--called "GraphCast"--which outperforms the most accurate deterministic operational medium-range weather forecasting system in the world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph neural networks and a novel high-resolution multi-scale mesh representation, which we trained on historical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)'s ERA5 reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and six atmospheric variables, each at 37 vertical pressure levels, on a 0.25-degree latitude-longitude grid, which corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more accurate than ECMWF's deterministic operational forecasting system, HRES, on 90.0% of the 2760 variable and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike traditional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher quality, and more recent data, the skill of the forecasts can improve. Together these results represent a key step forward in complementing and improving weather modeling with ML, open new opportunities for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical sciences.
translated by 谷歌翻译